A Preliminary Analysis of the InfiniPath and XD1 Network Interfaces

Ron Brightwell Doug Doerfler Keith Underwood

Sandia National Laboratories

Center for Computation, Computers, Information, and Mathematics

Workshop on Communication Architectures for Clusters
April 25, 2006

Exploring Recent Trend in Network Interfaces

- Leveraging commodity technology while providing some hardware innovation to deliver increased performance
 - Both PathScale InfiniPath and Cray's Rapid Array Interconnect (RAI) leverage InfiniBand transport layer and HyperTransport
- InfiniPath introduces more radical change
 - Move processing from the network interface to the host CPU(s)

Extends Previous Evaluation

- Cluster 2004 paper provided analysis of Elan-4 and IB
- This paper does the same type of analysis for InfiniPath and RAI
- We look at five areas
 - Capabilities
 - Programming interface
 - Connection establishment
 - Memory registration
 - Progress, offload, and overlap

PathScale InfiniPath

- Few technical details describing implementation
- Process has been to guess and let Greg Lindahl correct
- Main philosophy is to move functions typically performed by a relatively slow NIC processor to a much faster host processor
- No transmit DMA engines on the interface
 - Host processor must move data from host memory to NIC memory
- NIC recognizes incoming write and streams data onto the network
- Receive-side writes incoming messages into host memory and records where they have been written
- Destination is either explicit or anonymous
- Host is responsible for recognizing errors and performance reliability and flow control functions

Cray's Rapid Array Interconnect (RAI)

- Even fewer published technical details
- RAI has processors on the NIC to offload and accelerate core network functions to unburden the host and provide overlap
- Unknown how much these units differ from traditional IB NICs
- Small MPI messages done with memory-tomemory copies
- Transmit DMA engine for large transfers

Programming API

- InfiniPath
 - Write directly into mapped NIC memory
 - Supports OpenIB API
- RAI
 - Similar to VIA-based APIs like VAPI and uDAPL
- Neither support the ability to do MPI tag matching

Connections

- InfiniPath
 - Connectionless
 - No concept of a queue pair
- RAI
 - Explicit connection establishment
 - VIA/IB queue pairs
 - Application memory must be committed to each endpoint

Memory Registration

InfiniPath

- No registration required for transmits
- Zero-copy receives require explicit memory registration

• RAI

Explicit registration for send, receive, and RDMA buffers

Progress, Offload, and Overlap

Progress

 MPI posted receive queue in user space means neither InfiniPath nor RAI have independent progress for long message transfers

Offload

- Neither NIC does offload
 - InfiniPath approach directly conflicts

Overlap

- RAI supports overlap for RDMA, but is hampered for MPI
- InfiniPath approach directly conflicts

Test Platforms

	Emerald	Red Squall	Thunderbird	Cray XD1
Interconnect	4x InfiniPath	Elan-4	4x InfiniBand	Dual 4x IB
Host Interface	HyperTransport	PCI-X	x8 PCI-E	HyperTranspot
Peak Link BW	2 GB/s	2.133 GB/s	2 GB/s	4 GB/s
Host Interfce BW	6.4 GB/s	1.064 GB/s	4 GB/s	3.2 GB/s
Host CPU(s)	4 2.2 GHz Opteron	2 2.2 GHz Opteron	2 3.4 GHz EM64T	2 2.2 GHz Opteron
Memory Speed	Dual DDR-400	Dual DDR-333	Dual DDR-400	Dual DDR-400
os	RHEL-4	SUSE-9.1 Pro	SUSE-9.1 Pro	SLES 9
Compilers	PathScale 2.2	PathScale 2.1	PathScale 2.1	PGI 6.0.5
MPI	InfiniPath 1.1	QsNet 1.24-43	MVAPICH 0.92	MPICH 1.2.6
Nodes	144	256	4096	72

Micro-Benchmarks and Application Tests

- Micro-benchmarks
 - Pallas MPI benchmark suite
 - OSU streaming bandwidth
 - 160 outstanding sends
 - Also used to calculate message rate
 - COMB benchmark suite
 - Polling method
 - Used to calculate CPU availability
- Application
 - LAMMPS molecular dynamics simulation
 - 2001 Fortran version
 - 2005 C++ version

Ping-Pong Latency

Ping-Pong Bandwidth

Send-Receive Bandwidth

32-Node Exchange Bandwidth

32-Node Broadcast

32-Node Allreduce

32-Node Alltoall

Streaming Bandwidth

Message Rate

CPU Availability

LAMMPS-2001 Efficiency

(1 process per node)

LAMMPS-2001 Efficiency

(2 processes per node)

LAMMPS-2005 Efficiency

(1 process per node)

LAMMPS-2005 Efficiency

(2 processes per node)

Conclusions

- InfiniPath and RAI demonstrate good performance relative to other established technologies
- Both demonstrate better latency performance than pure commodity IB NICs
- Message rate is also significantly better
- Traditional micro-benchmarks do not expose the drawbacks of using host CPU(s) for network functionality

Future Work

- More sophisticated micro-benchmarks
 - Message rate
 - Impact of CPU availability
 - MPI queue traversal
- Real application analysis

Acknowledgments

- Greg Lindahl
 - For telling us how the InfiniPath NIC didn't work
- AMD Developer Center (http://devcenter.amd.com)
 - For access to the Emerald platform
- ORNL National Center for Computational Sciences
 - For access to their Cray XD1

